3.83 \(\int \frac{\sqrt{a+b x+c x^2}}{x^3 (d-f x^2)} \, dx\)

Optimal. Leaf size=353 \[ \frac{\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{8 a^{3/2} d}-\frac{\sqrt{a} f \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{d^2}-\frac{\sqrt{f} \sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d} \tanh ^{-1}\left (\frac{-2 a \sqrt{f}+x \left (2 c \sqrt{d}-b \sqrt{f}\right )+b \sqrt{d}}{2 \sqrt{a+b x+c x^2} \sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d}}\right )}{2 d^2}+\frac{\sqrt{f} \sqrt{a f+b \sqrt{d} \sqrt{f}+c d} \tanh ^{-1}\left (\frac{2 a \sqrt{f}+x \left (b \sqrt{f}+2 c \sqrt{d}\right )+b \sqrt{d}}{2 \sqrt{a+b x+c x^2} \sqrt{a f+b \sqrt{d} \sqrt{f}+c d}}\right )}{2 d^2}-\frac{(2 a+b x) \sqrt{a+b x+c x^2}}{4 a d x^2} \]

[Out]

-((2*a + b*x)*Sqrt[a + b*x + c*x^2])/(4*a*d*x^2) + ((b^2 - 4*a*c)*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x
+ c*x^2])])/(8*a^(3/2)*d) - (Sqrt[a]*f*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/d^2 - (Sqrt[f]*
Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*
d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*d^2) + (Sqrt[f]*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*A
rcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a +
 b*x + c*x^2])])/(2*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.878815, antiderivative size = 353, normalized size of antiderivative = 1., number of steps used = 20, number of rules used = 10, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.357, Rules used = {6725, 720, 724, 206, 734, 843, 621, 1021, 1078, 1033} \[ \frac{\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{8 a^{3/2} d}-\frac{\sqrt{a} f \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{d^2}-\frac{\sqrt{f} \sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d} \tanh ^{-1}\left (\frac{-2 a \sqrt{f}+x \left (2 c \sqrt{d}-b \sqrt{f}\right )+b \sqrt{d}}{2 \sqrt{a+b x+c x^2} \sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d}}\right )}{2 d^2}+\frac{\sqrt{f} \sqrt{a f+b \sqrt{d} \sqrt{f}+c d} \tanh ^{-1}\left (\frac{2 a \sqrt{f}+x \left (b \sqrt{f}+2 c \sqrt{d}\right )+b \sqrt{d}}{2 \sqrt{a+b x+c x^2} \sqrt{a f+b \sqrt{d} \sqrt{f}+c d}}\right )}{2 d^2}-\frac{(2 a+b x) \sqrt{a+b x+c x^2}}{4 a d x^2} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x + c*x^2]/(x^3*(d - f*x^2)),x]

[Out]

-((2*a + b*x)*Sqrt[a + b*x + c*x^2])/(4*a*d*x^2) + ((b^2 - 4*a*c)*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x
+ c*x^2])])/(8*a^(3/2)*d) - (Sqrt[a]*f*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/d^2 - (Sqrt[f]*
Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*
d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*d^2) + (Sqrt[f]*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*A
rcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a +
 b*x + c*x^2])])/(2*d^2)

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 720

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(m + 1)*
(d*b - 2*a*e + (2*c*d - b*e)*x)*(a + b*x + c*x^2)^p)/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[(p*(b^2 -
4*a*c))/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[
{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m +
2*p + 2, 0] && GtQ[p, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1021

Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(h*(a + b*x + c*x^2)^p*(d + f*x^2)^(q + 1))/(2*f*(p + q + 1)), x] - Dist[1/(2*f*(p + q + 1)), Int[(a + b*x +
c*x^2)^(p - 1)*(d + f*x^2)^q*Simp[h*p*(b*d) + a*(-2*g*f)*(p + q + 1) + (2*h*p*(c*d - a*f) + b*(-2*g*f)*(p + q
+ 1))*x + (h*p*(-(b*f)) + c*(-2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, g, h, q}, x] && NeQ
[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[p + q + 1, 0]

Rule 1078

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d
+ e*x + f*x^2]), x], x] /; FreeQ[{a, c, d, e, f, A, B, C}, x] && NeQ[e^2 - 4*d*f, 0]

Rule 1033

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[-(a*c), 2]}, Dist[h/2 + (c*g)/(2*q), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - (c*g)
/(2*q), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[-(a*c)]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x+c x^2}}{x^3 \left (d-f x^2\right )} \, dx &=\int \left (\frac{\sqrt{a+b x+c x^2}}{d x^3}+\frac{f \sqrt{a+b x+c x^2}}{d^2 x}+\frac{f^2 x \sqrt{a+b x+c x^2}}{d^2 \left (d-f x^2\right )}\right ) \, dx\\ &=\frac{\int \frac{\sqrt{a+b x+c x^2}}{x^3} \, dx}{d}+\frac{f \int \frac{\sqrt{a+b x+c x^2}}{x} \, dx}{d^2}+\frac{f^2 \int \frac{x \sqrt{a+b x+c x^2}}{d-f x^2} \, dx}{d^2}\\ &=-\frac{(2 a+b x) \sqrt{a+b x+c x^2}}{4 a d x^2}-\frac{\left (b^2-4 a c\right ) \int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx}{8 a d}-\frac{f \int \frac{-2 a-b x}{x \sqrt{a+b x+c x^2}} \, dx}{2 d^2}+\frac{f \int \frac{\frac{b d}{2}+(c d+a f) x+\frac{1}{2} b f x^2}{\sqrt{a+b x+c x^2} \left (d-f x^2\right )} \, dx}{d^2}\\ &=-\frac{(2 a+b x) \sqrt{a+b x+c x^2}}{4 a d x^2}-\frac{\int \frac{-b d f-f (c d+a f) x}{\sqrt{a+b x+c x^2} \left (d-f x^2\right )} \, dx}{d^2}+\frac{\left (b^2-4 a c\right ) \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x}{\sqrt{a+b x+c x^2}}\right )}{4 a d}+\frac{(a f) \int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx}{d^2}\\ &=-\frac{(2 a+b x) \sqrt{a+b x+c x^2}}{4 a d x^2}+\frac{\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{8 a^{3/2} d}-\frac{(2 a f) \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x}{\sqrt{a+b x+c x^2}}\right )}{d^2}+\frac{\left (f \left (c d-b \sqrt{d} \sqrt{f}+a f\right )\right ) \int \frac{1}{\left (-\sqrt{d} \sqrt{f}-f x\right ) \sqrt{a+b x+c x^2}} \, dx}{2 d^2}+\frac{\left (f \left (c d+b \sqrt{d} \sqrt{f}+a f\right )\right ) \int \frac{1}{\left (\sqrt{d} \sqrt{f}-f x\right ) \sqrt{a+b x+c x^2}} \, dx}{2 d^2}\\ &=-\frac{(2 a+b x) \sqrt{a+b x+c x^2}}{4 a d x^2}+\frac{\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{8 a^{3/2} d}-\frac{\sqrt{a} f \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{d^2}-\frac{\left (f \left (c d-b \sqrt{d} \sqrt{f}+a f\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d f-4 b \sqrt{d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac{b \sqrt{d} \sqrt{f}-2 a f-\left (-2 c \sqrt{d} \sqrt{f}+b f\right ) x}{\sqrt{a+b x+c x^2}}\right )}{d^2}-\frac{\left (f \left (c d+b \sqrt{d} \sqrt{f}+a f\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d f+4 b \sqrt{d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac{-b \sqrt{d} \sqrt{f}-2 a f-\left (2 c \sqrt{d} \sqrt{f}+b f\right ) x}{\sqrt{a+b x+c x^2}}\right )}{d^2}\\ &=-\frac{(2 a+b x) \sqrt{a+b x+c x^2}}{4 a d x^2}+\frac{\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{8 a^{3/2} d}-\frac{\sqrt{a} f \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{d^2}-\frac{\sqrt{f} \sqrt{c d-b \sqrt{d} \sqrt{f}+a f} \tanh ^{-1}\left (\frac{b \sqrt{d}-2 a \sqrt{f}+\left (2 c \sqrt{d}-b \sqrt{f}\right ) x}{2 \sqrt{c d-b \sqrt{d} \sqrt{f}+a f} \sqrt{a+b x+c x^2}}\right )}{2 d^2}+\frac{\sqrt{f} \sqrt{c d+b \sqrt{d} \sqrt{f}+a f} \tanh ^{-1}\left (\frac{b \sqrt{d}+2 a \sqrt{f}+\left (2 c \sqrt{d}+b \sqrt{f}\right ) x}{2 \sqrt{c d+b \sqrt{d} \sqrt{f}+a f} \sqrt{a+b x+c x^2}}\right )}{2 d^2}\\ \end{align*}

Mathematica [A]  time = 0.549134, size = 316, normalized size = 0.9 \[ \frac{x^2 \left (b^2 d-4 a (2 a f+c d)\right ) \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+x (b+c x)}}\right )-2 \sqrt{a} \left (-2 a \sqrt{f} x^2 \sqrt{a f+b \sqrt{d} \sqrt{f}+c d} \tanh ^{-1}\left (\frac{2 a \sqrt{f}+b \sqrt{d}+b \sqrt{f} x+2 c \sqrt{d} x}{2 \sqrt{a+x (b+c x)} \sqrt{a f+b \sqrt{d} \sqrt{f}+c d}}\right )+2 a \sqrt{f} x^2 \sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d} \tanh ^{-1}\left (\frac{-2 a \sqrt{f}+b \left (\sqrt{d}-\sqrt{f} x\right )+2 c \sqrt{d} x}{2 \sqrt{a+x (b+c x)} \sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d}}\right )+d (2 a+b x) \sqrt{a+x (b+c x)}\right )}{8 a^{3/2} d^2 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x + c*x^2]/(x^3*(d - f*x^2)),x]

[Out]

((b^2*d - 4*a*(c*d + 2*a*f))*x^2*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + x*(b + c*x)])] - 2*Sqrt[a]*(d*(2*a +
b*x)*Sqrt[a + x*(b + c*x)] - 2*a*Sqrt[f]*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*x^2*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt
[f] + 2*c*Sqrt[d]*x + b*Sqrt[f]*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + x*(b + c*x)])] + 2*a*Sqrt[f
]*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*x^2*ArcTanh[(-2*a*Sqrt[f] + 2*c*Sqrt[d]*x + b*(Sqrt[d] - Sqrt[f]*x))/(2*
Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + x*(b + c*x)])]))/(8*a^(3/2)*d^2*x^2)

________________________________________________________________________________________

Maple [B]  time = 0.299, size = 1953, normalized size = 5.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(1/2)/x^3/(-f*x^2+d),x)

[Out]

f/d^2*(c*x^2+b*x+a)^(1/2)+1/2*f/d^2*b*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)-f/d^2*a^(1/2)*ln((2*
a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)-1/2*f/d^2*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(
1/2)/f)+1/f*(-b*(d*f)^(1/2)+a*f+c*d))^(1/2)+1/2/d^2*ln((1/2/f*(-2*c*(d*f)^(1/2)+b*f)+(x+(d*f)^(1/2)/f)*c)/c^(1
/2)+((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+a*f+c*d))^(1/2))*c
^(1/2)*(d*f)^(1/2)-1/4*f/d^2*ln((1/2/f*(-2*c*(d*f)^(1/2)+b*f)+(x+(d*f)^(1/2)/f)*c)/c^(1/2)+((x+(d*f)^(1/2)/f)^
2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+a*f+c*d))^(1/2))/c^(1/2)*b-1/2/d^2/(1/f*(
-b*(d*f)^(1/2)+a*f+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+a*f+c*d)+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2
*(1/f*(-b*(d*f)^(1/2)+a*f+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*
(-b*(d*f)^(1/2)+a*f+c*d))^(1/2))/(x+(d*f)^(1/2)/f))*b*(d*f)^(1/2)+1/2*f/d^2/(1/f*(-b*(d*f)^(1/2)+a*f+c*d))^(1/
2)*ln((2/f*(-b*(d*f)^(1/2)+a*f+c*d)+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+a*f+c*
d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+a*f+c*d))^(1
/2))/(x+(d*f)^(1/2)/f))*a+1/2/d/(1/f*(-b*(d*f)^(1/2)+a*f+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+a*f+c*d)+1/f*(-2*
c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+a*f+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(
d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+a*f+c*d))^(1/2))/(x+(d*f)^(1/2)/f))*c-1/2/d/a/x^2*(c*x^2
+b*x+a)^(3/2)+1/4/d*b/a^2/x*(c*x^2+b*x+a)^(3/2)-1/4/d*b^2/a^2*(c*x^2+b*x+a)^(1/2)+1/8/d*b^2/a^(3/2)*ln((2*a+b*
x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)-1/4/d*b/a^2*c*(c*x^2+b*x+a)^(1/2)*x+1/2/d*c/a*(c*x^2+b*x+a)^(1/2)-1/2/d*c/
a^(1/2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)-1/2*f/d^2*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f
*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+a*f+c*d)/f)^(1/2)-1/2/d^2*ln((1/2*(2*c*(d*f)^(1/2)+b*f)/f+(x-(d*f)^(1/2)/f)*
c)/c^(1/2)+((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+a*f+c*d)/f)^(1/2))*
c^(1/2)*(d*f)^(1/2)-1/4*f/d^2*ln((1/2*(2*c*(d*f)^(1/2)+b*f)/f+(x-(d*f)^(1/2)/f)*c)/c^(1/2)+((x-(d*f)^(1/2)/f)^
2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+a*f+c*d)/f)^(1/2))/c^(1/2)*b+1/2/d^2/((b*(d*f)^(1
/2)+a*f+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+a*f+c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1
/2)+a*f+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+a*f+c*d)
/f)^(1/2))/(x-(d*f)^(1/2)/f))*b*(d*f)^(1/2)+1/2*f/d^2/((b*(d*f)^(1/2)+a*f+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+a
*f+c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+a*f+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c
+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+a*f+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f))*a+1/2/d/((b*(d
*f)^(1/2)+a*f+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+a*f+c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d
*f)^(1/2)+a*f+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+a*
f+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f))*c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{\sqrt{c x^{2} + b x + a}}{{\left (f x^{2} - d\right )} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/x^3/(-f*x^2+d),x, algorithm="maxima")

[Out]

-integrate(sqrt(c*x^2 + b*x + a)/((f*x^2 - d)*x^3), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/x^3/(-f*x^2+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{\sqrt{a + b x + c x^{2}}}{- d x^{3} + f x^{5}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(1/2)/x**3/(-f*x**2+d),x)

[Out]

-Integral(sqrt(a + b*x + c*x**2)/(-d*x**3 + f*x**5), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/x^3/(-f*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError